## 7. MICRO-INVERTEBRATE EVIDENCE ON THE PALEOECOLOGY OF YSIDORA LAGOON, SAN DIEGO COUNTY, SOUTHERN CALIFORNIA by Manuel R. Palacios-Fest

Paleoenvironmental reconstructions are powerful instruments to understand local and regional changes of the environment through time. Coastal environmental change is of major significance because not only the climate and geologic agents like tectonism and isostatic or eustatic changes of sea level have modified the coastline through time but man may also induce it. Of coastal environments estuaries are highly significant because they provide a unique source of information about the periodicity of continental and marine cycles in the short- (e.g., seasonality, human activity) and the long-term (e.g., isostatic or eustatic sea level change).

It is now clear that estuaries face accelerating human stress. Over the past century human activity along the coast of southern California has almost deprived this area of the many estuaries that characterized the region before the Anglo occupation. Of 28 estuaries reported at the start of the century, three disappeared, 10 were drastically modified and most of the remaining 15 were at risk of partial or total destruction on behalf of urbanization by 1970 (Frey et al. 1970). More than 60 percent of all estuaries in the State of California have been destroyed. However, assessing the magnitude of human impact on estuarine environments is difficult because frequently the trail of clues to environmental change disappears very quickly. Few monitoring records extend sufficiently far back in time to cover the period of change. Micro-invertebrates provide a potential tool to approach human-induced environmental change.

Understanding the nature and magnitude of environmental change requires knowing how the environment has changed in the past, particularly before human influence. Environmental change trends are registered in the geologic record. However, the recognition of estuaries in the geologic record is not easy mainly because little studies have been conducted to understand them as sedimentary environments (Maynard and Biggs 1985). As a result there are few unifying models of deposition, few clues for matching modern and ancient deposits. Schubel and Hirschberg (1978) state: "estuarine deposits rarely can now be delimited unequivocally from other shallow marine deposits in the geologic record because of their limited areal extent, their ephemeral character and their lack of distinctive features." However, this statement is arguable because the paleontologic record of estuaries may be very distinctive; some organisms are limited to this brackish-water environment (e.g., characea [algae]; oysters [mollusks]; diatoms, and ostracodes [microcrustaceans]). Besides, it is common to find mixed marine and freshwater fossils that are unlikely to co-occur under other conditions.

The main objectives of this study were to: (1) compile abundance and diversity data for ostracodes, molluscs, and foraminifers; and (2) use these data to reconstruct Holocene paleoenvironmental conditions in the Ysidora Lagoon. The paleoecological analyses presented in this study were conducted in support of the ASM Affiliates archaeological and historical

project, focused on reconstructing the effect of environmental changes on human settlement and land use.

The project area is located at 33° 30' N, 117° 15' W, south of Las Flores Creek, north of Camp Pendleton, and east of Vandergift Boulevard, as part of the Santa Margarita River catchment (see Figure 3). The climate of the southern California coast is classified as Mediterranean, with a temperate wet winter and a moderate dry summer. The dominant fall-winter precipitation occurs between October and March and summer rain is almost nonexistent. The high-pressure system developed west of the coast controls the climate.

#### MATERIALS AND METHODS

Twelve samples from YSD-1 from the Santa Margarita River basin, San Diego County, were analyzed for microfossil contents. Routine micropaleontological sample processing was conducted to extract microfossils from the sediments. A freeze-and-thaw technique was used according to Forester (1988), modified by Palacios-Fest (1994). Approximately 100 g of sediments were washed through a set of three sieves with mesh openings of 1 mm, 106  $\mu$ m and 63  $\mu$ m to separate the three sand fractions (coarse, medium, and fine) (Table 11). This process contributes to the recovery of microfossils more efficiently.

Routine micropaleontological techniques were used for extracting microfossils (Forester 1988; Palacios-Fest 1994). Micropaleontology samples were collected at discrete intervals based on core log description. The abundance of ostracodes and foraminifers was recognized from extremely rare to extremely abundant<sup>1</sup>.

Residuals were examined under a low power stereoscopic microscope. Routine micropaleontological analysis was performed to determine fossil content and faunal composition. Ostracode paleoecological assemblages were defined and grouped according to species abundance following Benson (1959), McKenzie and Swain (1967), and Delorme (1969, 1989).

Foraminiferal paleoenvironments were determined based on models of Ingle (1980) and modifications by Ingle and Finger (1990). Interpretations of microenvironments were aided by a number of previous studies by Bandy (1953, 1963), Bradshaw (1957, 1980), Lankford and Phleger (1973), Scott (1973), and Scott et al. (1976).

Molluscs were identified and compared with studies of modern biological composition (Ramírez 1981; Soule and Oguri 1990; Soule et al. 1991; Carter 1991). A variety of factors influence the distribution of invertebrate fauna. Occurrence of terrestrial, fresh- and brackishwater, and marine molluscs associated with the former environmental factors were used to reconstruct the paleoenvironmental history of Ysidora Lagoon.

<sup>1</sup> Abundance explanation: Extremely abundant (>(1001), very abundant (>501 < 1000), abundant (>101 < 500), moderately abundant (>51 < 100), common (>21 < 50), rare (>6 < 20), and extremely rare (<5).

7. Micro-Invertebrate Evidence on the Paleoecology

Sample Volume, Total and by Size Fraction, Relative Abundance, Lithology and Sediment Color for Core YSD-1 Table 11.

|            | Stratioranhic | Bulk   | Recidual | 7    | >106   | >63   | < 63  | 7    | >106  | >63      | < 63     |                   |                      | Color     |
|------------|---------------|--------|----------|------|--------|-------|-------|------|-------|----------|----------|-------------------|----------------------|-----------|
| Sample ID  | Interval      | Wt.    | Wt.      | uu   | uuu    | mm    | mm    | um   | um    | mm       | uuu      | Lithology         | Color                | Code      |
|            | (cm)          | (g)    | (g)      | (g)  | (g)    | (g)   | (g)   | (0)  | (%)   | $(0_0')$ | $(0_0')$ |                   |                      |           |
| YSD-1-83   | 83-87         | 122.58 | 66.73    | 0.90 | 52.21  | 13.62 | 55.85 | 0.73 | 42.59 | 11.11    | 45.56    | Silty Sand        | Pale Yellowish Brown | 10 YR 6/2 |
| YSD-1-338  | 338-342       | 102.15 | 95.34    | 0.00 | 86.26  | 9.08  | 6.81  | 0.00 | 84.44 | 8.89     | 6.67     | Fine Sand         | Pale Yellowish Brown | 10 YR 6/2 |
| YSD-1-594  | 594-597       | 127.12 | 115.77   | 0.00 | 113.50 | 2.27  | 11.35 | 0.00 | 89.29 | 1.79     | 8.93     | Fine Sand         | Yellowish Gray       | 5 Y 8/1   |
| YSD-1-721  | 721-724       | 106.69 | 34.15    | 0.10 | 20.43  | 13.62 | 72.54 | 0.09 | 19.15 | 12.77    | 67.99    | Clayey Sandy Silt | Dark Yellowish Brown | 10 YR 4/2 |
| YSD-1-850  | 850-854       | 100.00 | 49.94    | 0.00 | 22.70  | 27.24 | 50.06 | 0.00 | 22.70 | 27.24    | 50.06    | Clayey Sandy Silt | Dark Yellowish Brown | 10 YR 4/2 |
| YSD-1-1072 | 1072-1075     | 108.96 | 75.01    | 0.10 | 70.37  | 4.54  | 33.95 | 0.09 | 64.58 | 4.17     | 31.16    | Silty Sand        | Pale Yellowish Brown | 10 YR 6/2 |
| YSD-1-1226 | 1226-1229     | 106.69 | 61.49    | 0.20 | 59.02  | 2.27  | 45.20 | 0.19 | 55.32 | 2.13     | 42.37    | Clayey Silty Sand | Pale Yellowish Brown | 10 YR 6/2 |
| YSD-1-1721 | 1721-1723     | 115.77 | 15.99    | 0.10 | 4.54   | 11.35 | 99.78 | 0.09 | 3.92  | 9.80     | 86.19    | Clay              | Light Olive Gray     | 5 Y 5/2   |
| YSD-1-1937 | 1937-1940     | 102.15 | 46.10    | 0.70 | 18.16  | 27.24 | 56.05 | 0.69 | 17.78 | 26.67    | 54.87    | Silty Clay        | Light Olive Gray     | 5 Y 5/2   |
| YSD-1-2226 | 2226-2229     | 102.15 | 43.93    | 0.80 | 22.70  | 20.43 | 58.22 | 0.78 | 22.22 | 20.00    | 56.99    | Silty Clay        | Light Olive Gray     | 5 Y 5/2   |
| YSD-1-2611 | 2611-2614     | 100.00 | 93.67    | 0.60 | 90.80  | 2.27  | 6.33  | 0.60 | 90.80 | 2.27     | 6.33     | Sand              | Pale Yellowish Green | 10 GY 7/2 |
| YSD-1-3032 | 3032-3036     | 97.61  | 35.05    | 1.00 | 24.97  | 9.08  | 62.56 | 1.02 | 25.58 | 9.30     | 64.09    | Silty Clay        | Light Olive Gray     | 5 Y 6/1   |

CA-SDI-13,930 Testing and Evaluation

Taphonomic features were used to distinguish allochthonous (introduced) from autochthonous (native) populations. Fragmentation, abrasion, encrustation, and coating were recorded in the ostracode and foraminifera analysis. In addition, the adult/juvenile (A/J) and carapace/valve (C/V) ratios of ostracodes were recorded to identify assemblages. Pre-Quaternary foraminifera reworked from adjacent sedimentary rock formations were excluded from consideration in this study.

Ostracodes were used to reconstruct the late Quaternary history of the Santa Margarita Lagoon, based on a qualitative estimate of environmental change. Each assemblage was assigned a relative value ranging from -2 (freshwater) to +2 (marine), based on the weighed average of each assemblage as determined by this equation:

SI = -2(mean percent from Freshwater Assemblage [1]) - (mean percent from Brackish-water Assemblage [2]) + (mean percent from Transitional Assemblage [3]) + 2(mean percent from Marine Assemblage [4])

### RESULTS

Grain-size, lithology and color of residual sediments are shown in Table 11 and Figure 21. Lithologically, the samples range from pale yellowish brown (10 YR 6/2) to dark yellowish brown (10 YR 4/2) to light olive gray (5 Y 5/2) sand to silty clay and clay. Mainly biotite, quartz, charcoal, and shell fragments accumulate in the area. Other minerals occur occasionally (Table 12).

Four samples were fossiliferous. Table 13 summarizes the fossil contents of the samples, as well as the main taphonomic parameters required to determine the origin of the specimens. Ostracodes are common to abundant. Eleven species of ostracodes occur in Ysidora Lagoon (Table 14); six are nonmarine (*Candona patzcuaro, Cyprideis beaconensis, Limnocythere staplini, Cypridopsis vidua, Cyprinotus salinus,* and *Ilyocypris bradyi*), and five are marine (*Puriana pacifica, Megacytherura johnsoni, Loxoconcha tamarindoidea, Aurila ? sp.,* and *Xestoleberis banda*). Of the six nonmarine species, four are eurytopic (tolerant to a wide range salinity), *I. bradyi* is stenotopic (restricted salinity tolerance: 100-4000 mg L<sup>-1</sup> total dissolved solids, TDS; Delorme 1989), indicating relatively freshwater conditions, whereas *C. patzcuaro* is moderately stenotopic (200-5000 mg L<sup>-1</sup>; Delorme 1989), indicating higher tolerance to saline conditions.

Foraminifera are rare; three benthic species were recovered: *Ammonia beccarii*, *Elphidium incertum*, and *Nonion* sp. No planktonic species were observed (Table 15). Molluscs are extremely rare to rare; three species were present: *Cerithidea californica*, and two unknown gastropods (Table 16).

# Ysidora Lagoon, San Diego County, California

Grain-Size Frequency (from wet sieving)



Core YSD-1

N/A = Not Analyzed

Figure 21. Grain size diagrams derived from wet sieving for Core YSD-1. 1 mm, 106  $\mu$ m and 63  $\mu$ m sieves were used to separate microfossils and to obtain the grain sizes plotted here.

|                   |                              | Fable 12.            | Main M                 | inerals Pre- | sent at Ysic | lora Lago | oon, Obser     | ved from Co       | ore YSD-1   |                       |                    |
|-------------------|------------------------------|----------------------|------------------------|--------------|--------------|-----------|----------------|-------------------|-------------|-----------------------|--------------------|
| Sample ID         | Stratigraphi<br>Interval (cm | ic Bulk W1<br>1) (g) | t. Residual<br>Wt. (g) | Quartz       | Biotite      | Tufa      | Clay<br>Clumps | Rock<br>Fragments | Charcoal    | Calcareous<br>Nodules | Shell<br>Fragments |
| YSD-1-83          | 83-87                        | 122.58               | 66.73                  | x            | х            | x         |                | X                 | х           | Х                     | x                  |
| YSD-1-338         | 338-342                      | 102.15               | 95.34                  | Х            | Х            |           |                | Х                 | Х           |                       |                    |
| YSD-1-594         | 594-597                      | 127.12               | 115.77                 | Х            | Х            |           |                | Х                 |             |                       | Х                  |
| YSD-1-721         | 721-724                      | 106.69               | 34.15                  | Х            | Х            |           |                |                   | Х           | X                     |                    |
| YSD-1-850         | 850-854                      | 100.00               | 49.94                  |              | Х            |           | Х              |                   | Х           | X                     |                    |
| YSD-1-1072        | 1072-1075                    | 108.96               | 75.01                  |              | Х            |           | Х              |                   | Х           | X                     | Х                  |
| YSD-1-1226        | 1226-1229                    | 106.69               | 61.49                  |              | Х            |           | Х              |                   | Х           |                       | Х                  |
| YSD-1-1721        | 1721-1723                    | 115.77               | 15.99                  |              | Х            |           | Х              |                   |             |                       |                    |
| YSD-1-1937        | 1937-1940                    | 102.15               | 46.10                  |              | Х            |           | Х              |                   | Х           |                       | Х                  |
| YSD-1-2226        | 2226-2229                    | 102.15               | 43.93                  |              | Х            |           | Х              |                   | Х           |                       | Х                  |
| YSD-1-2611        | 2611-2614                    | 100.00               | 93.67                  | Х            | Х            |           |                |                   | Х           |                       |                    |
| YSD-1-3032        | 3032-3036                    | 97.61                | 35.05                  | Х            |              |           | Х              |                   | Х           |                       |                    |
| (taphon           | omic parame                  | sters are u          | ised to recogi         | nize the ori | gin of micr  | oinvertet | orates [allo   | chthonous v       | s. autochth | ndod snouo            | lation])           |
|                   |                              | Bulk                 |                        |              |              |           |                |                   |             |                       |                    |
| Somula ID 1       | tratigraphic                 | Wt. Resid            | lual<br>(a) Octracodo  | e Roraminifo | ao Malluca   |           | Fragmental     | ion Abrasion      | Encrustatio | n Coating R           | edox<br>dov Color  |
| YSD-1-83          | 83-87 1                      | 22.58 66.            | 73                     |              | 2            |           | 20             | (a)<br>0          | 0           | 0                     | 0 White            |
| YSD-1-338         | 338-342 1                    | 02.15 95.3           | 34                     |              |              |           |                |                   |             |                       |                    |
| YSD-1-594         | 594-597 1                    | 27.12 115.           | 77                     |              |              |           |                |                   |             |                       |                    |
| YSD-1-721         | 721-724 1                    | 06.69 34.            | 15 108                 | 10           | 8            |           | 5              | 5                 | 0           | 5                     | 0 Clear            |
| YSD-1-850         | 850-854 1                    | 00.00 49.9           | 94                     |              |              |           |                |                   |             |                       |                    |
| YSD-1-1072        | 1072-1075 1                  | 08.96 75.0           | 01 34                  |              | 5            |           | 5              | 5                 | 0           | 0                     | 0 Clear            |
| <b>YSD-1-1226</b> | 1226-1229 1                  | 06.69 61.            | 49 140                 | 9            | 2            |           | 10             | 5                 | 0           | 0                     | 0 Clear            |
| YSD-1-1721        | 1721-1723 1                  | 15.77 15.9           | 66                     |              |              |           |                |                   |             |                       |                    |
| YSD-1-1937        | 1937-1940 1                  | 02.15 46.            | 10                     |              |              |           |                |                   |             |                       |                    |
| YSD-1-2226        | 2226-2229 1                  | 02.15 43.9           | 93                     |              |              |           |                |                   |             |                       |                    |
| YSD-1-2611        | 2611-2614 1                  | 00.00 93.0           | 67                     |              |              |           |                |                   |             |                       |                    |
|                   |                              |                      |                        |              |              |           |                |                   |             |                       |                    |

7. Micro-Invertebrate Evidence on the Paleoecology

CA-SDI-13,930 Testing and Evaluation

| Table 14. Contracto: Tread and Relative Annualse (including degree of thearticulation of valves and compensitie created)       Mit Mindia       Mit Mindia     Mit Mindia     Mit Mindia     Mit Mindia     Mit Mindia     Mit Mindia       Mit Mindia     Mit Mindia     Mit Mindia     Mit Mindia     Mit Mindia     Mit Mindia     Mit Mindia       Mit Mindia     Mit Mindia     Mit Mindia     Mit Mindia     Mit Mindia     Mit Mindia     Mit Mindia       Mit Mindia     Mit Mindia     Mit Mindia     Mit Mindia     Mit Mindia     Mit Mindia     Mit Mindia     Mit Mindia       Mit Mindia     Mit Mindia     Mit Mindia     Mit Mindia     Mit Mindia     Mit Mindia     Mit Mindia       Mit Mit Mindia       Mit Mit Mit Mit Mindia     Mit Mindia     Mit Mindia     Mit Mindia     Mit Mindia     Mit Mindia       Mit Mit Mit Mindia       Mit Mit Mindia     Mit Mindia     Mit Mindia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ratigraphic Bulk Residu        |                    | Table 1          | 4. Ostra       | code To             | tal and Re | lative Abu | ndance (in    | cluding de | gree of dis | articulation | of valves a  | nd ontoge | netic recor | ds)  |               |          |      |     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--------------------|------------------|----------------|---------------------|------------|------------|---------------|------------|-------------|--------------|--------------|-----------|-------------|------|---------------|----------|------|-----|
| M. W. W. W. W. MakadaMathematical Mathematical Mathematic                                                                                                                                                                                                                                                                                                                              | ohic Bulk Residu               |                    |                  |                |                     |            |            |               |            |             |              |              |           |             |      |               |          |      |     |
| 0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | I Wr Wr                        | al<br>Ostraeodos ( | Octracodes/a     | Cvaridoneis vi | dua                 |            |            | Cunridois hor | sisuonos   |             |              | Ilvocunzie h | radvi     |             |      | Cuntinotus s  | salinus  |      |     |
| 1323     1323     1323     1323     1323     1323     1323     1323     1323     1323     1323     1323     1323     1323     1323     1323     1323     1323     1323     1323     1323     1323     1323     1333     1333     1333     1333     1333     1333     1333     1333     1333     1333     1333     1333     1333     1333     1333     1333     1333     1333     1333     1333     1333     1333     1333     1333     1333     1333     1333     1333     1333     1333     1333     1333     1333     1333     1333     1333     1333     1333     1333     1333     1333     1333     1333     1333     1333     1333     1333     1333     1333     1333     1333     1333     1333     1333     1333     1333     1333     1333     1333     1333     1333     1333     1333     1333     1333     1333     1333     1333     1333 <td< th=""><th>(g)<br/>(g)</th><th></th><th>0</th><th>#</th><th>%</th><th>L/A</th><th>C/V</th><th>#</th><th>%</th><th>ſ/V</th><th>C/V</th><th>#</th><th>%</th><th>ſ/Y</th><th>C/V</th><th>#</th><th>%</th><th>ſ/Y</th><th>C/V</th></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (g)<br>(g)                     |                    | 0                | #              | %                   | L/A        | C/V        | #             | %          | ſ/V         | C/V          | #            | %         | ſ/Y         | C/V  | #             | %        | ſ/Y  | C/V |
| 0     10.13     1.11.1.1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1 </td <td>122.58 66.73</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 122.58 66.73                   |                    |                  |                |                     |            |            |               |            |             |              |              |           |             |      |               |          |      |     |
| 1     0.000     1.01     1     1     0     2     2     1     0     2     0     0       0     0.000     10     1     1     0     2     1     0     2     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2 102.15 95.34                 |                    |                  |                |                     |            |            |               |            |             |              |              |           |             |      |               |          |      |     |
| 1     000     101     2     2     1     0     2     2     0       1     000<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7 127.12 115.7                 | 2                  |                  |                |                     |            |            |               |            |             |              |              |           |             |      |               |          |      |     |
| 1     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4 106.69 34.15                 | 108                | 1.01             |                |                     |            |            | 64            | 59         | 0.31        | 0            | 7            | 2         | 1           | 0    | 7             | 2        | 0    | 0   |
| 0.000 0.010     10     131     1     8.1     0.07     0.07     0.01       0.010 0.010 0.010     0.013 0.010     0.013 0.010     0.013     0.017     0.017     0.017       0.010 0.010 0.010     0.013 0.010     0.013 0.010     0.017     0.017     0.017     0.017     0.017       0.010 0.010 0.010     0.010 0.010     1.010     0.0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 100.00 49.94                 |                    |                  |                |                     |            |            |               |            |             |              |              |           |             |      |               |          |      |     |
| 8 1000 614 6 10 11 12 837 056 10 11 12 837 056 10 10 70 041 11 11 11 11 11 11 11 11 11 11 11 11 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5 108.96 75.01                 | 34                 | 0.31             |                |                     |            |            | 24            | 71         | 0.67        | 0            |              |           |             |      |               |          |      |     |
| 11:77:13:0     11:77:13:0       11:77:13:0     10:13:4.0       10:13:4.0     10:13:4.0       10:13:4.0     10:03:4.0       10:13:4.0     10:03:4.0       10:13:4.0     10:03:4.0       10:10:13:13     10:00:10:10       10:13:4.0     10:00:10:10       10:13:4.0     10:00:00:10       10:13:4.0     10:00:00:10       10:13:4.1     10:00:00:10       10:13:4.1     10:00:00:10       10:13:4.1     10:00:00:10       10:13:4.1     10:00:00:00:00       10:10:13:4.1     10:00:00:00       10:10:13:4.1     10:00:00:00       10:10:13:4.1     10:00:00:00       10:10:14:00:00:00:00     10:00:00:00       10:10:14:00:00:00:00     10:00:00:00       10:10:14:00:00:00:00     10:00:00:00       10:10:14:00:00:00:00     10:00:00:00       10:10:14:00:00:00:00     10:00:00:00       10:10:14:00:00:00:00     10:00:00:00       10:10:14:00:00:00:00     10:00:00:00       10:10:14:00:00:00:00:00:00:00:00:00     10:00:00:00       10:10:14:00:00:00:00:00:00:00:00:00:00:0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 29 106.69 61.49                | 140                | 1.31             | 12 8           | 3.57                | 0.67       | 0          | 110           | 79         | 0.47        | 0.11         |              |           |             |      |               |          |      |     |
| 0 (21) (6.1)<br>0 (21) (6.1)<br>0 (21) (6.1)<br>0 (21) (7.1)<br>1 | 23 115.77 15.99                |                    |                  |                |                     |            |            |               |            |             |              |              |           |             |      |               |          |      |     |
| 0 (0.15 4-35)       (0.10 4-35)       (0.9 of 0.15)       (0.10 101     (0.10 101     (0.10 101     (0.10 101     (0.10 101     (0.10 101     (0.10 101     (0.10 101     (0.10 101     (0.10 101     (0.10 101     (0.10 101     (0.10 101     (0.10 101     (0.10 101     (0.10 101     (0.10 101     (0.10 101     (0.10 101     (0.10 101     (0.10 101     (0.10 101     (0.10 101     (0.10 101     (0.10 101     (0.10 101     (0.10 101     (0.10 101     (0.10 101     (0.10 101     (0.10 101     (0.10 101     (0.10 101      (0.10 101 <td>40 102.15 46.10</td> <td>_</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 40 102.15 46.10                | _                  |                  |                |                     |            |            |               |            |             |              |              |           |             |      |               |          |      |     |
| 14141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414 </td <td>29 102.15 43.93</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 29 102.15 43.93                |                    |                  |                |                     |            |            |               |            |             |              |              |           |             |      |               |          |      |     |
| 9. W101 510N101 510N10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 14 100.00 93.67                |                    |                  |                |                     |            |            |               |            |             |              |              |           |             |      |               |          |      |     |
| In the bulk that bulk that the bulk that that that that that that the bulk that tha                                                                                                                                                                                                                                                                                                                     | 20.05 10./6 05                 |                    |                  |                |                     |            |            |               |            |             |              |              |           |             |      |               |          |      |     |
| 10     00     00     00     00     00     00     00     00     00     00     00     00     00     00     00     00     00     00     00     00     00     00     00     00     00     00     00     00     00     00     00     00     00     00     00     00     00     00     00     00     00     00     00     00     00     00     00     00     00     00     00     00     00     00     00     00     00     00     00     00     00     00     00     00     00     00     00     00     00     00     00     00     00     00     00     00     00     00     00     00     00     00     00     00     00     00     00     00     00     00     00     00     00     00     00     00     00     00     00     00     00<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | phic Bulk Residu<br>al Wt. Wt. | al<br>Ostracodes ( | Ostracodes/g     | Candona patzei | uaro                |            |            | Limnocyther   | e staplini |             |              | Puriana pac  | ifica     |             | V    | Aegacytherura | johnsoni |      |     |
| 1     12.28     66.1     1     2     10.12.58     66.1     1     4     1     0     1     4     1     1     0     1     4     1     1     0     1     4     1     1     0     1     4     1     1     1     0     1     4     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (g)<br>(g)                     |                    | )                | #              | %                   | A/J        | C/V        | #             | %          | A/J         | C/V          | #            | %         | A/J         | C/V  | , #           | %        | A/J  | C/V |
| 2     1015     954       3     10111137     10     0     0     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7 122.58 66.73                 |                    |                  |                |                     |            |            |               |            |             |              |              |           |             |      |               |          |      |     |
| 7 12111157<br>8 1000 034 034 034 034 034 034 034 034 034                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 42 102.15 95.34                |                    |                  |                |                     |            |            |               |            |             |              |              |           |             |      |               |          |      |     |
| 31     106.0     1.11     6     6     0     4     4     1     0     1     4     4     1       35     160.0     0.31     4     12     0     0     4     1     0     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 97 127.12 115.7                | 7                  |                  |                |                     |            |            |               |            |             |              |              |           |             |      |               |          |      |     |
| 31     0000     031     4     12     0     4     12     0     0     4     0     0     4     0     0     0     4     0     0     0     4     0     0     0     4     0     0     0     4     0     0     4     0     0     0     4     0     0     4     0     0     0     4     0     0     4     0     0     4     0     0     4     0     0     4     0     0     4     0     0     4     0     4     0     0     4     0     0     4     0     0     4     0     4     0     4     0     4     0     4     0     4     0     4     0     0     4     0     0     4     0     1     0     1     1     0     1     1     1     1     1     1     1     1     1     1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 24 106.69 34.15                | 108.00             | 1.01             | 9              | 9                   | 0          | 0          | 4             | 4          | 1           | 0            | 10           | 6         | 0.2         | 0    | 4             | 4        | 1    | 0   |
| 73 188-96 7-01 34.00 0.31 4 12 0 0 0 1 31 4 3 0 0 0 1 1 1 0 6 4 1 0 1 1 0 1 3 0.75 0 0 0.013 43.00 0.131 44 3 0 0 1 1 1 0 1 4 3 0.75 0 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.013 43.01 0.0                                                                                                                                                                                                                                                                                                    | 54 100.00 49.94                |                    |                  |                |                     |            |            |               |            |             |              |              |           |             |      |               |          |      |     |
| 20     1000     131     4     3     0     2     1     1     0     4     3     0.75     0       20     115.77     16.00     13.1     4     3     0     7     3     17.77     10     4     3     0.75     0       21     15.77     16.00     35.05     1     1     0     4     3     0.75     3     0.75     3     0.75     3     0.75     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 075 108.96 75.01               | 34.00              | 0.31             | 4              | 12                  | 0          | 0          | 4             | 12         | 1           | 0            |              |           |             |      |               |          |      |     |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 229 106.69 61.49               | 140.00             | 1.31             | 4              | 3                   | 0          | 0          | 2             | 1          | 1           | 0            | 9            | 4         | 1           | 0    | 4             | 3        | 0.75 | 0   |
| 40   102.15   46.10     14   100.00   35.05     14   100.00   35.05     14   100.00   35.05     14   0.00   35.05     15   0.0   1   0.0     16   0.0   1.0   1.0   0.0     17   1.22.86   6.73   0.0   1.01   10   0     10   0.0   1.01   10   0   0.0   1.01   10   0.0     115.77   15.33   66.33   1.01   10   0   0.0   0.01   10   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 23 115.77 15.99                | _                  |                  |                |                     |            |            |               |            |             |              |              |           |             |      |               |          |      |     |
| 20   100.15   43.00     14   100.00   3.67     14   Nut.   Nt.   Nt.     15   0.10   3.00     16   Nt.   Nt.   Nt.     17   12.38   6.70   1   CV   1   Antia ?9,     17   12.31   15.77   1   CV   1   CV   1   V.     17   12.71   115.77   1   CV   1   CV   1   V.   CV     12.38   66.3   1.01   10   9   0.80   0.40   4   1   1   2   1   0     12.12   15.71   1.59   1.31   4   3   1   0   1   1   1   1   1   1   1   1   1   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 40 102.15 46.10                |                    |                  |                |                     |            |            |               |            |             |              |              |           |             |      |               |          |      |     |
| 14   10.00   93.67     36   7.61   35.05     30   97.61   35.05     31   NL,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 29 102.15 43.93                |                    |                  |                |                     |            |            |               |            |             |              |              |           |             |      |               |          |      |     |
| 0     9.161     35.05       10     0.101     State     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11     11<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14 100.00 93.67                |                    |                  |                |                     |            |            |               |            |             |              |              |           |             |      |               |          |      |     |
| Mit     Nit.     Residual     Arrial ? Sh.       1     Wit.     Nit.     Ottomode Shrauodes/g $Iaxoconstantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantialistantistantistantistantialistantistantistantialistantistantistantia$                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 36 97.61 35.05                 |                    |                  |                |                     |            |            |               |            |             |              |              |           |             |      |               |          |      |     |
| Image: Norm of the control                                                                                                                                                                                                                                                                                                                             | phic Bulk Residu               | al<br>Octoordeed   | Octano and and a | I auguation    | o projection of the | idaa       |            | Vactolohan    | a handa    |             | Y            | - 0 C.       |           |             |      |               |          |      |     |
| 7 12.58 6.73 7 12.58 6.73 7 12.58 6.73 7 12.51 15.77 15.75 15.75 15.75 15.75 15.75 15.75 15.75 15.75 15.75 15.75 15.75 15.77 15.77 15.77 15.77 15.77 15.77 15.00 1.01 10 9 0.80 0.40 4 4 1 1 2 2 1 0   24 100.00 4.94 1 1 2 2 1 0   25 13.40 0.31 4 3 1 0 1 1 0   223 115.77 15.99 940 0.31 4 3 1 0.50   223 105.15 46.10 1.31 4 3 1 0.50   223 102.15 46.10 1.31 4 3 1 0.50   223 102.15 45.10 1.30 1.31 4 3 1 0.50   224 102.15 45.10 1.41 0 4 3 1 0.50   224 102.15 45.30 30.55 10.00 3.55 10.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (a) (a) (a)                    |                    |                  | #              |                     | A/I        | CN         | #             | omma c     | T/A         | C/V          | -dc - min    | 20        | I/V         | CV   |               |          |      |     |
| 42     102.15     95.34       97     127.12     115.77       24     106.69     34.15     10     0       24     106.69     34.15     10     0     10     10     0       24     106.69     34.15     10     0     1     1     2     2     1     0       54     100.00     49.94     1     1     2     2     1     0       73     185.05     51.40     0.31     4     3     1     0.50       223     115.77     15.99      1     0     4     3     1     0.50       223     115.77     5.99      4     3     1     0.50       215.7     15.99        4     3     1     0.50       223     102.15     46.10       4     3     1     0.50       224     100.15     46.10       4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7 122.58 66.73                 |                    |                  |                | :                   |            |            |               | 2          |             |              |              | t         | 5           |      |               |          |      |     |
| 97   127.12   115.77     24   106.66   34.15   10   10   9   0.80   0.40   4   4   1   1   2   2   1   0     24   100.00   49.94   4   1   1   2   2   1   0     75   108.06   5.01   34.00   0.31   4   3   1   0.5     229   106.06   1.31   4   3   1   0   9   9     229   106.06   1.31   4   3   1   0   9   9     215.77   15.99   9   1.40   3   1   0   4   3   1   0.50     223   10.515   45.10   9   1   0   4   3   1   0.50     215   10.515   45.10   9   1   0   9   1   0.50     223   10.515   45.10   9   1   0   9   1   0.50     224   10.010   5.45   9 <t< td=""><td>42 102.15 95.34</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 42 102.15 95.34                |                    |                  |                |                     |            |            |               |            |             |              |              |           |             |      |               |          |      |     |
| 24 106.69 34.15 108.00 1.01 10 9 0.80 0.40 4 4 1 1 2 2 1 0<br>54 100.00 49.94<br>075 108.96 75.01 34.00 0.31<br>229 106.69 61.49 14.00 1.31 4 3 1 0<br>723 115.77 15.99<br>94 102.15 46.10<br>229 102.15 46.10<br>341 1000 93.67<br>341 1000 93.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 97 127.12 115.7                | 4                  |                  |                |                     |            |            |               |            |             |              |              |           |             |      |               |          |      |     |
| 54 100.0 49.94<br>075 108.96 75.01 34.00 0.31<br>229 106.69 61.49 140.00 1.31 4 3 1 0 4 3 1 0.50<br>221 10.215 46.10<br>222 10.215 46.10<br>223 10.215 46.10<br>224 10.00 2.65<br>225 10.00 3.67<br>226 10.00 3.67<br>227 10.00 3.67<br>228 10.00 3.67<br>228 10.00 3.67<br>229 10.00 3.67<br>230 10.00 3.67<br>240 10.00                                             | 24 106.69 34.15                | 108.00             | 1.01             | 10             | 6                   | 0.80       | 0.40       | 4             | 4          | 1           | 1            | 2            | 2         | 1           | 0    |               |          |      |     |
| 77 108.96 75.01 34.00 0.31<br>229 106.69 61.49 140.00 1.31 4 3 1 0 4 3 1 0.50<br>723 115.77 15.99<br>40 102.15 46.10<br>229 102.15 43.03<br>229 102.15 43.03<br>516 1000 93.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 54 100.00 49.94                |                    |                  |                |                     |            |            |               |            |             |              |              |           |             |      |               |          |      |     |
| 29 106.69 61.49 140.00 1.31 4 3 1 0 4 3 1 0.50<br>23 115.77 15.99<br>240 102.15 46.10<br>229 102.15 46.10<br>229 102.15 46.10<br>230 103.67<br>240 103.03 93.67<br>240 103                                                                    | 75 108.96 75.01                | 34.00              | 0.31             |                |                     |            |            |               |            |             |              |              |           |             |      |               |          |      |     |
| 23 115.77 15.99<br>40 102.15 46.10<br>29 102.15 43.93<br>514 100.00 93.67<br>536 67 35.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 229 106.69 61.49               | 140.00             | 1.31             | 4              | 3                   |            | 0          |               |            |             |              | 4            | 3         |             | 0.50 |               |          |      |     |
| 40 102.15 46.10<br>229 102.15 43.93<br>514 100.00 53.67<br>536 67 61 35.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 723 115.77 15.99               |                    |                  |                |                     |            |            |               |            |             |              |              |           |             |      |               |          |      |     |
| 29 102.15 43:93<br>14 100.00 93.67<br>14 05.00 13.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 940 102.15 46.10               |                    |                  |                |                     |            |            |               |            |             |              |              |           |             |      |               |          |      |     |
| 14 100.00 33.67<br>as optil 35.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 29 102.15 43.93                |                    |                  |                |                     |            |            |               |            |             |              |              |           |             |      |               |          |      |     |
| 342 07 61 35 05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 514 100.00 93.67               |                    |                  |                |                     |            |            |               |            |             |              |              |           |             |      |               |          |      |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 036 97.61 35.05                |                    |                  |                |                     |            |            |               |            |             |              |              |           |             |      |               |          |      |     |

CA-SDI-13,930 Testing and Evaluation

7. Micro-Invertebrate Evidence on the Paleoecology

CA-SDI-13,930 Testing and Evaluation

| Sample ID  | Stratigraphic<br>Interval<br>(cm) | Bulk Wt.<br>(g)                 | Residual<br>Wt.<br>(g) | Foraminifera Orș      | ganisms/g | Ammonia<br>beccarii<br># | Elp.<br>inc.               | hidium<br>ertum<br># % | Nonion sp.<br>#    | %  |
|------------|-----------------------------------|---------------------------------|------------------------|-----------------------|-----------|--------------------------|----------------------------|------------------------|--------------------|----|
| YSD-1-83   | 83-87                             | 122.58                          | 66.73                  |                       |           |                          |                            |                        |                    |    |
| YSD-1-338  | 338-342                           | 102.15                          | 95.34                  |                       |           |                          |                            |                        |                    |    |
| YSD-1-594  | 594-597                           | 127.12                          | 115.77                 |                       |           |                          |                            |                        |                    |    |
| YSD-1-721  | 721-724                           | 106.69                          | 34.15                  | 10                    | 0.1       |                          |                            | 8 80                   | 5                  | 20 |
| YSD-1-850  | 850-854                           | 100.00                          | 49.94                  |                       |           |                          |                            |                        |                    |    |
| (SD-1-1072 | 1072-1075                         | 108.96                          | 75.01                  |                       |           |                          |                            |                        |                    |    |
| (SD-1-1226 | 1226-1229                         | 106.69                          | 61.49                  | 9                     | 0.1       | 7                        | 33.33                      | 4 66.67                |                    |    |
| {SD-1-1721 | 1721-1723                         | 115.77                          | 15.99                  |                       |           |                          |                            |                        |                    |    |
| /SD-1-1937 | 1937-1940                         | 102.15                          | 46.10                  |                       |           |                          |                            |                        |                    |    |
| (SD-1-2226 | 2226-2229                         | 102.15                          | 43.93                  |                       |           |                          |                            |                        |                    |    |
| /SD-1-2611 | 2611-2614                         | 100.00                          | 93.67                  |                       |           |                          |                            |                        |                    |    |
| /SD-1-3032 | 3032-3036                         | 97.61                           | 35.05                  |                       |           |                          |                            |                        |                    |    |
| I          |                                   | 04                              |                        |                       |           |                          | Contractor                 | For the C              |                    |    |
| ļ          | Sample ID                         | Suraugrapme<br>Interval<br>(cm) | Bulk Wt<br>(g)         | . Residual Wt.<br>(g) | Molluscs  | Organisms/£              | certinuet<br>g californici | castropou              | castropou<br>sp. 2 |    |
|            | YSD-1-83                          | 83-87                           | 122.58                 | 66.73                 | 2         | 0.02                     | 2                          |                        |                    |    |
|            | YSD-1-338                         | 338-342                         | 102.15                 | 95.34                 |           |                          |                            |                        |                    |    |
|            | YSD-1-594                         | 594-597                         | 127.12                 | 115.77                |           |                          |                            |                        |                    |    |
|            | YSD-1-721                         | 721-724                         | 106.69                 | 34.15                 | 8         | 0.07                     | 8                          |                        |                    |    |
|            | YSD-1-850                         | 850-854                         | 100.00                 | 49.94                 |           |                          |                            |                        |                    |    |
|            | YSD-1-1072                        | 1072-1075                       | 108.96                 | 75.01                 | 5         | 0.02                     |                            | 2                      |                    |    |
|            | YSD-1-1226                        | 1226-1229                       | 106.69                 | 61.49                 | 5         | 0.02                     |                            |                        | 2                  |    |
|            | YSD-1-1721                        | 1721-1723                       | 115.77                 | 15.99                 |           |                          |                            |                        |                    |    |
|            | YSD-1-1937                        | 1937-1940                       | 102.15                 | 46.10                 |           |                          |                            |                        |                    |    |
|            | YSD-1-2226                        | 2226-2229                       | 102.15                 | 43.93                 |           |                          |                            |                        |                    |    |
|            | YSD-1-2611                        | 2611-2614                       | 100.00                 | 93.67                 |           |                          |                            |                        |                    |    |
|            |                                   |                                 |                        |                       |           |                          |                            |                        |                    |    |

CA-SDI-13,930 Testing and Evaluation

The taphonomic parameters indicate low to moderate fragmentation (0-20 percent). Abrasion, encrustation and coating are low (0-5 percent) in all samples. The redox index shows no alteration of microfossils after burial. Ostracode adult/juvenile (A/J) and carapace/valve (C/V) ratios as shown in Table 14 indicate an autochthonous faunal composition.

### **INTERPRETATION**

Based on criteria provided in studies by Marinov (1964; in Puri et al. 1969), Benson (1959), Benson and Kaesler (1963), Swain (1967), and McKenzie and Swain (1967), three assemblages were identified: (1) a brackish-water assemblage consisting of species common in continental waters with a wide range of tolerance to salinity; (2) a transitional marine assemblage consisting of mixed marine and nonmarine ostracodes, and foraminifers; and (3) a marine assemblage dominantly formed by marine species unable to tolerate brackish-water conditions. This faunal association is similar to the Ballona Lagoon (Los Angeles County) assemblages that show the progressive transition and alternation of four assemblages (Palacios-Fest et al. n.d.), including freshwater associations not recorded at Ysidora Lagoon. Faunal similarities with San Elijo Lagoon are also evident, although San Elijo Lagoon shows freshwater conditions not recorded at Ysidora Lagoon.

The nonmarine ostracode species present in core YSD-1 (*C. vidua*, *C. beaconensis*, *I. bradyi*, *C. salinus*, *C. patzcuaro*, and *L. staplini*) reflect alternating "fresh" to brackish-water conditions (Figure 22). *I. bradyi* is a stream, freshwater indicator (Delorme 1989). *C. patzcuaro*, is a slow streamflow indicator that tolerates higher salinity than *I. bradyi*. *C. vidua*, *C. salinus*, *L. staplini*, and *C. beaconensis* are tolerant to a wide salinity range (Delorme 1989). *C. vidua* is also associated with slow streamflow (Delorme 1989). *L. staplini*, *C. salinus*, and *C. beaconensis* are common species in estuarine environments (Benson 1959).

The marine ostracodes present in Core YSD-1 (*P. pacifica*, *M. johnsoni*, *L. tamarindoidea*, *X. banda*, and *Aurila* ? sp.) reflect the influence of marine conditions. Marine forms are not as abundant as the nonmarine forms, indicating that the fauna was introduced in short pulses. The occurrence of a mixed adult/juvenile and articulated carapaces indicates the species established a biocenosis as marine conditions prevailed.

Dominance of *C. beaconensis* confirms a transitional assemblage that favors marine species. However, at 1072-1075 cm, no marine forms were recovered, indicating that at this time freshwater input dominated the environment. The occurrence of juveniles of *C. patzcuaro* with restricted salinity tolerance implies salinity decrease below 5000 mg L<sup>-1</sup> (Delorme 1989); however, stressing conditions did not allow the species to establish a biocenosis.

Lagoonal foraminifera (*Ammonia beccarii*, *Elphidium incertum*, and *Nonion* sp.) in two samples (1226-1229 cm and 721-724 cm) are consistent with the ostracode record (Figure 23). The occurrence of *A. beccarii* may indicate freshwater influence as the species tolerates low salinity; the other species indicate marine conditions.



Figure 22. Ostracode relative abundance and paleoenvironmental trends from Core YSD-1. Organisms/g of sediment are plotted to the far left. FW = freshwater influence; M = marine influence.



Figure 23. Foraminifera relative abundance and paleonvironmental trends from Core YSD-1. Organisms/g of sediment are plotted to the far left.

### CONCLUSIONS

In recent years, the use of micro-invertebrates, especially ostracodes, as indicators of marine, brackish-, and freshwater environments has resulted in a powerful tool to understand environmental change in coastal zones. Because estuaries are poorly documented or interpreted in the geologic record, it has been uncommon to find an environmental trend. Maynard and Biggs (1985) stated the importance of unifying models of deposition and matching modern and ancient deposits. Through micro-invertebrate analysis, it is possible to reconstruct the long-term environmental evolution of Ysidora Lagoon from the late Pleistocene to the Holocene. It is also possible to present an evolutionary model for estuaries in southern California.

Ysidora Lagoon and San Elijo Lagoon, to the south, share several faunal similarities that lend evidence for the development of a model for estuarine development and change. The paleoenvironmental trends shown by the two lagoons are alike, indicating that the area was subject to marine influence earlier in the record. Environmental change to increasing continental influence at both Ysidora and San Elijo Lagoons may have resulted from regional tectonism and eustatic sea level change, similar to changes recorded at Ballona Lagoon, Los Angeles County (Palacios-Fest et al. n.d.). These processes eventually led to the siltation and alluvial sedimentation of Ysidora and San Elijo Lagoons, pushing the tidal deltas seaward as the rate of sea level rise slowed at 5,000 years ago and stabilized at about 3,000 years ago. However, at this time, the fragmented fossil record in the Ysidora cores inhibits a direct comparison. Important differences between Ysidora and San Elijo Lagoons exist. In the Ysidora cores, foraminifera and molluscs are less diverse while more nonmarine ostracode species occur (Palacios-Fest n.d.). This may have resulted from differential processes affecting the stabilization of salty marshes at Ysidora Lagoon during alternating periods of aridity and high rainfall causing extreme runoff and lagoonal discharge. Such processes inhibit lagoon and marsh stabilization that would have facilitated the establishment of different mulluscan faunal groups.